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Unix/C Dynamic Memory Management

� Malloc() is used to allocate contiguous blocks of 
(virtual) heap memory.

� Malloc() API was invented for the PDP 7
• 1.75us memory access time was faster than the 

3.5us add instruction time.
• Memory access had a uniform speed.

� Memory access time is now
• 200+ times slower than the add instruction time.
• Hierarchical in nature.
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Unix/C Memory Management

Does It Need an Upgrade?

� The Malloc() API is a simple model that people are 
comfortable with.

� The Malloc()/C API could be extended to capture 
performance throughout the memory hierarchy.

� Is there evidence a change to the Malloc()/C API would 
be worth pursuing?
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Hardware Optimizations Often

Require Memory Alignment
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BG/L memory throughput: a[i] = b[i] + ss*c[i]

Results: Norris, Hartono, Gropp
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Hardware Optimizations Depend

on Memory Layout Choices

� An x86 SSE enabled processor often optimizes well 
with unaliased aligned array-like data:
• double *x = new double[10000] ;

double *y = new double[10000] ;
double *z = new double[10000] ;

� But some applications/architectures optimize best with 
struct-like data due to reduced register pressure or 
better use of prefetch streams:
• typedef struct { double x, y, z ; } Coord_t;

Coord_t *coord = new Coord_t[10000] ;
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Compiler Optimizations Depend

on Memory Layout Choices

Quadrilateral Volume Calculation
Restricted Pointers
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Compiler Optimizations Depend

on Memory Layout Choices
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Quadrilateral Volume Calculation
C++ STL
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PGI sees more optimizations when 
using the STL.
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Extending Malloc() Could Improve

Reuse of Cache Memory

� Malloc()/C could be extended to minimize
inter-array cache conflict
• Modify base address and padding (Rivera, Tseng).
• Separate declaration and allocation phase?

� Malloc()/C could be further extended to minimize
inter-core cache conflict
• Requires use of HugeTLB pages.
• Would work best with O/S and hardware thread-

team scheduling support.
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Unix/C Dynamic Memory Management

� Effective dynamic memory management is key to 
performance portability across emerging architectures.

� Would it be acceptable to explore new models for 
Malloc()/C interactions?

� Could we reap the benefits without any changes to 
existing legacy code?


